mirror of
https://git.uploadfilter24.eu/lerentis/terraform-provider-gitea.git
synced 2024-11-14 14:08:12 +00:00
294 lines
7.9 KiB
Go
294 lines
7.9 KiB
Go
|
// Copyright 2017, OpenCensus Authors
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
//
|
||
|
|
||
|
package view
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
"time"
|
||
|
|
||
|
"go.opencensus.io/metric/metricdata"
|
||
|
)
|
||
|
|
||
|
// AggregationData represents an aggregated value from a collection.
|
||
|
// They are reported on the view data during exporting.
|
||
|
// Mosts users won't directly access aggregration data.
|
||
|
type AggregationData interface {
|
||
|
isAggregationData() bool
|
||
|
addSample(v float64, attachments map[string]interface{}, t time.Time)
|
||
|
clone() AggregationData
|
||
|
equal(other AggregationData) bool
|
||
|
toPoint(t metricdata.Type, time time.Time) metricdata.Point
|
||
|
}
|
||
|
|
||
|
const epsilon = 1e-9
|
||
|
|
||
|
// CountData is the aggregated data for the Count aggregation.
|
||
|
// A count aggregation processes data and counts the recordings.
|
||
|
//
|
||
|
// Most users won't directly access count data.
|
||
|
type CountData struct {
|
||
|
Value int64
|
||
|
}
|
||
|
|
||
|
func (a *CountData) isAggregationData() bool { return true }
|
||
|
|
||
|
func (a *CountData) addSample(_ float64, _ map[string]interface{}, _ time.Time) {
|
||
|
a.Value = a.Value + 1
|
||
|
}
|
||
|
|
||
|
func (a *CountData) clone() AggregationData {
|
||
|
return &CountData{Value: a.Value}
|
||
|
}
|
||
|
|
||
|
func (a *CountData) equal(other AggregationData) bool {
|
||
|
a2, ok := other.(*CountData)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
return a.Value == a2.Value
|
||
|
}
|
||
|
|
||
|
func (a *CountData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
||
|
switch metricType {
|
||
|
case metricdata.TypeCumulativeInt64:
|
||
|
return metricdata.NewInt64Point(t, a.Value)
|
||
|
default:
|
||
|
panic("unsupported metricdata.Type")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// SumData is the aggregated data for the Sum aggregation.
|
||
|
// A sum aggregation processes data and sums up the recordings.
|
||
|
//
|
||
|
// Most users won't directly access sum data.
|
||
|
type SumData struct {
|
||
|
Value float64
|
||
|
}
|
||
|
|
||
|
func (a *SumData) isAggregationData() bool { return true }
|
||
|
|
||
|
func (a *SumData) addSample(v float64, _ map[string]interface{}, _ time.Time) {
|
||
|
a.Value += v
|
||
|
}
|
||
|
|
||
|
func (a *SumData) clone() AggregationData {
|
||
|
return &SumData{Value: a.Value}
|
||
|
}
|
||
|
|
||
|
func (a *SumData) equal(other AggregationData) bool {
|
||
|
a2, ok := other.(*SumData)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
return math.Pow(a.Value-a2.Value, 2) < epsilon
|
||
|
}
|
||
|
|
||
|
func (a *SumData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
||
|
switch metricType {
|
||
|
case metricdata.TypeCumulativeInt64:
|
||
|
return metricdata.NewInt64Point(t, int64(a.Value))
|
||
|
case metricdata.TypeCumulativeFloat64:
|
||
|
return metricdata.NewFloat64Point(t, a.Value)
|
||
|
default:
|
||
|
panic("unsupported metricdata.Type")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// DistributionData is the aggregated data for the
|
||
|
// Distribution aggregation.
|
||
|
//
|
||
|
// Most users won't directly access distribution data.
|
||
|
//
|
||
|
// For a distribution with N bounds, the associated DistributionData will have
|
||
|
// N+1 buckets.
|
||
|
type DistributionData struct {
|
||
|
Count int64 // number of data points aggregated
|
||
|
Min float64 // minimum value in the distribution
|
||
|
Max float64 // max value in the distribution
|
||
|
Mean float64 // mean of the distribution
|
||
|
SumOfSquaredDev float64 // sum of the squared deviation from the mean
|
||
|
CountPerBucket []int64 // number of occurrences per bucket
|
||
|
// ExemplarsPerBucket is slice the same length as CountPerBucket containing
|
||
|
// an exemplar for the associated bucket, or nil.
|
||
|
ExemplarsPerBucket []*metricdata.Exemplar
|
||
|
bounds []float64 // histogram distribution of the values
|
||
|
}
|
||
|
|
||
|
func newDistributionData(bounds []float64) *DistributionData {
|
||
|
bucketCount := len(bounds) + 1
|
||
|
return &DistributionData{
|
||
|
CountPerBucket: make([]int64, bucketCount),
|
||
|
ExemplarsPerBucket: make([]*metricdata.Exemplar, bucketCount),
|
||
|
bounds: bounds,
|
||
|
Min: math.MaxFloat64,
|
||
|
Max: math.SmallestNonzeroFloat64,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sum returns the sum of all samples collected.
|
||
|
func (a *DistributionData) Sum() float64 { return a.Mean * float64(a.Count) }
|
||
|
|
||
|
func (a *DistributionData) variance() float64 {
|
||
|
if a.Count <= 1 {
|
||
|
return 0
|
||
|
}
|
||
|
return a.SumOfSquaredDev / float64(a.Count-1)
|
||
|
}
|
||
|
|
||
|
func (a *DistributionData) isAggregationData() bool { return true }
|
||
|
|
||
|
// TODO(songy23): support exemplar attachments.
|
||
|
func (a *DistributionData) addSample(v float64, attachments map[string]interface{}, t time.Time) {
|
||
|
if v < a.Min {
|
||
|
a.Min = v
|
||
|
}
|
||
|
if v > a.Max {
|
||
|
a.Max = v
|
||
|
}
|
||
|
a.Count++
|
||
|
a.addToBucket(v, attachments, t)
|
||
|
|
||
|
if a.Count == 1 {
|
||
|
a.Mean = v
|
||
|
return
|
||
|
}
|
||
|
|
||
|
oldMean := a.Mean
|
||
|
a.Mean = a.Mean + (v-a.Mean)/float64(a.Count)
|
||
|
a.SumOfSquaredDev = a.SumOfSquaredDev + (v-oldMean)*(v-a.Mean)
|
||
|
}
|
||
|
|
||
|
func (a *DistributionData) addToBucket(v float64, attachments map[string]interface{}, t time.Time) {
|
||
|
var count *int64
|
||
|
var i int
|
||
|
var b float64
|
||
|
for i, b = range a.bounds {
|
||
|
if v < b {
|
||
|
count = &a.CountPerBucket[i]
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
if count == nil { // Last bucket.
|
||
|
i = len(a.bounds)
|
||
|
count = &a.CountPerBucket[i]
|
||
|
}
|
||
|
*count++
|
||
|
if exemplar := getExemplar(v, attachments, t); exemplar != nil {
|
||
|
a.ExemplarsPerBucket[i] = exemplar
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func getExemplar(v float64, attachments map[string]interface{}, t time.Time) *metricdata.Exemplar {
|
||
|
if len(attachments) == 0 {
|
||
|
return nil
|
||
|
}
|
||
|
return &metricdata.Exemplar{
|
||
|
Value: v,
|
||
|
Timestamp: t,
|
||
|
Attachments: attachments,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (a *DistributionData) clone() AggregationData {
|
||
|
c := *a
|
||
|
c.CountPerBucket = append([]int64(nil), a.CountPerBucket...)
|
||
|
c.ExemplarsPerBucket = append([]*metricdata.Exemplar(nil), a.ExemplarsPerBucket...)
|
||
|
return &c
|
||
|
}
|
||
|
|
||
|
func (a *DistributionData) equal(other AggregationData) bool {
|
||
|
a2, ok := other.(*DistributionData)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
if a2 == nil {
|
||
|
return false
|
||
|
}
|
||
|
if len(a.CountPerBucket) != len(a2.CountPerBucket) {
|
||
|
return false
|
||
|
}
|
||
|
for i := range a.CountPerBucket {
|
||
|
if a.CountPerBucket[i] != a2.CountPerBucket[i] {
|
||
|
return false
|
||
|
}
|
||
|
}
|
||
|
return a.Count == a2.Count && a.Min == a2.Min && a.Max == a2.Max && math.Pow(a.Mean-a2.Mean, 2) < epsilon && math.Pow(a.variance()-a2.variance(), 2) < epsilon
|
||
|
}
|
||
|
|
||
|
func (a *DistributionData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
||
|
switch metricType {
|
||
|
case metricdata.TypeCumulativeDistribution:
|
||
|
buckets := []metricdata.Bucket{}
|
||
|
for i := 0; i < len(a.CountPerBucket); i++ {
|
||
|
buckets = append(buckets, metricdata.Bucket{
|
||
|
Count: a.CountPerBucket[i],
|
||
|
Exemplar: a.ExemplarsPerBucket[i],
|
||
|
})
|
||
|
}
|
||
|
bucketOptions := &metricdata.BucketOptions{Bounds: a.bounds}
|
||
|
|
||
|
val := &metricdata.Distribution{
|
||
|
Count: a.Count,
|
||
|
Sum: a.Sum(),
|
||
|
SumOfSquaredDeviation: a.SumOfSquaredDev,
|
||
|
BucketOptions: bucketOptions,
|
||
|
Buckets: buckets,
|
||
|
}
|
||
|
return metricdata.NewDistributionPoint(t, val)
|
||
|
|
||
|
default:
|
||
|
// TODO: [rghetia] when we have a use case for TypeGaugeDistribution.
|
||
|
panic("unsupported metricdata.Type")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// LastValueData returns the last value recorded for LastValue aggregation.
|
||
|
type LastValueData struct {
|
||
|
Value float64
|
||
|
}
|
||
|
|
||
|
func (l *LastValueData) isAggregationData() bool {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
func (l *LastValueData) addSample(v float64, _ map[string]interface{}, _ time.Time) {
|
||
|
l.Value = v
|
||
|
}
|
||
|
|
||
|
func (l *LastValueData) clone() AggregationData {
|
||
|
return &LastValueData{l.Value}
|
||
|
}
|
||
|
|
||
|
func (l *LastValueData) equal(other AggregationData) bool {
|
||
|
a2, ok := other.(*LastValueData)
|
||
|
if !ok {
|
||
|
return false
|
||
|
}
|
||
|
return l.Value == a2.Value
|
||
|
}
|
||
|
|
||
|
func (l *LastValueData) toPoint(metricType metricdata.Type, t time.Time) metricdata.Point {
|
||
|
switch metricType {
|
||
|
case metricdata.TypeGaugeInt64:
|
||
|
return metricdata.NewInt64Point(t, int64(l.Value))
|
||
|
case metricdata.TypeGaugeFloat64:
|
||
|
return metricdata.NewFloat64Point(t, l.Value)
|
||
|
default:
|
||
|
panic("unsupported metricdata.Type")
|
||
|
}
|
||
|
}
|