package x25519 import ( fp "github.com/cloudflare/circl/math/fp25519" ) // ladderJoye calculates a fixed-point multiplication with the generator point. // The algorithm is the right-to-left Joye's ladder as described // in "How to precompute a ladder" in SAC'2017. func ladderJoye(k *Key) { w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved. fp.SetOne(&w[1]) // x1 = 1 fp.SetOne(&w[2]) // z1 = 1 w[3] = fp.Elt{ // x2 = G-S 0xbd, 0xaa, 0x2f, 0xc8, 0xfe, 0xe1, 0x94, 0x7e, 0xf8, 0xed, 0xb2, 0x14, 0xae, 0x95, 0xf0, 0xbb, 0xe2, 0x48, 0x5d, 0x23, 0xb9, 0xa0, 0xc7, 0xad, 0x34, 0xab, 0x7c, 0xe2, 0xee, 0xcd, 0xae, 0x1e, } fp.SetOne(&w[4]) // z2 = 1 const n = 255 const h = 3 swap := uint(1) for s := 0; s < n-h; s++ { i := (s + h) / 8 j := (s + h) % 8 bit := uint((k[i] >> uint(j)) & 1) copy(w[0][:], tableGenerator[s*Size:(s+1)*Size]) diffAdd(&w, swap^bit) swap = bit } for s := 0; s < h; s++ { double(&w[1], &w[2]) } toAffine((*[fp.Size]byte)(k), &w[1], &w[2]) } // ladderMontgomery calculates a generic scalar point multiplication // The algorithm implemented is the left-to-right Montgomery's ladder. func ladderMontgomery(k, xP *Key) { w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved. w[0] = *(*fp.Elt)(xP) // x1 = xP fp.SetOne(&w[1]) // x2 = 1 w[3] = *(*fp.Elt)(xP) // x3 = xP fp.SetOne(&w[4]) // z3 = 1 move := uint(0) for s := 255 - 1; s >= 0; s-- { i := s / 8 j := s % 8 bit := uint((k[i] >> uint(j)) & 1) ladderStep(&w, move^bit) move = bit } toAffine((*[fp.Size]byte)(k), &w[1], &w[2]) } func toAffine(k *[fp.Size]byte, x, z *fp.Elt) { fp.Inv(z, z) fp.Mul(x, x, z) _ = fp.ToBytes(k[:], x) } var lowOrderPoints = [5]fp.Elt{ { /* (0,_,1) point of order 2 on Curve25519 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, { /* (1,_,1) point of order 4 on Curve25519 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, { /* (x,_,1) first point of order 8 on Curve25519 */ 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00, }, { /* (x,_,1) second point of order 8 on Curve25519 */ 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24, 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b, 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86, 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57, }, { /* (-1,_,1) a point of order 4 on the twist of Curve25519 */ 0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, }, }