package x448 import ( fp "github.com/cloudflare/circl/math/fp448" ) // ladderJoye calculates a fixed-point multiplication with the generator point. // The algorithm is the right-to-left Joye's ladder as described // in "How to precompute a ladder" in SAC'2017. func ladderJoye(k *Key) { w := [5]fp.Elt{} // [mu,x1,z1,x2,z2] order must be preserved. w[1] = fp.Elt{ // x1 = S 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, } fp.SetOne(&w[2]) // z1 = 1 w[3] = fp.Elt{ // x2 = G-S 0x20, 0x27, 0x9d, 0xc9, 0x7d, 0x19, 0xb1, 0xac, 0xf8, 0xba, 0x69, 0x1c, 0xff, 0x33, 0xac, 0x23, 0x51, 0x1b, 0xce, 0x3a, 0x64, 0x65, 0xbd, 0xf1, 0x23, 0xf8, 0xc1, 0x84, 0x9d, 0x45, 0x54, 0x29, 0x67, 0xb9, 0x81, 0x1c, 0x03, 0xd1, 0xcd, 0xda, 0x7b, 0xeb, 0xff, 0x1a, 0x88, 0x03, 0xcf, 0x3a, 0x42, 0x44, 0x32, 0x01, 0x25, 0xb7, 0xfa, 0xf0, } fp.SetOne(&w[4]) // z2 = 1 const n = 448 const h = 2 swap := uint(1) for s := 0; s < n-h; s++ { i := (s + h) / 8 j := (s + h) % 8 bit := uint((k[i] >> uint(j)) & 1) copy(w[0][:], tableGenerator[s*Size:(s+1)*Size]) diffAdd(&w, swap^bit) swap = bit } for s := 0; s < h; s++ { double(&w[1], &w[2]) } toAffine((*[fp.Size]byte)(k), &w[1], &w[2]) } // ladderMontgomery calculates a generic scalar point multiplication // The algorithm implemented is the left-to-right Montgomery's ladder. func ladderMontgomery(k, xP *Key) { w := [5]fp.Elt{} // [x1, x2, z2, x3, z3] order must be preserved. w[0] = *(*fp.Elt)(xP) // x1 = xP fp.SetOne(&w[1]) // x2 = 1 w[3] = *(*fp.Elt)(xP) // x3 = xP fp.SetOne(&w[4]) // z3 = 1 move := uint(0) for s := 448 - 1; s >= 0; s-- { i := s / 8 j := s % 8 bit := uint((k[i] >> uint(j)) & 1) ladderStep(&w, move^bit) move = bit } toAffine((*[fp.Size]byte)(k), &w[1], &w[2]) } func toAffine(k *[fp.Size]byte, x, z *fp.Elt) { fp.Inv(z, z) fp.Mul(x, x, z) _ = fp.ToBytes(k[:], x) } var lowOrderPoints = [3]fp.Elt{ { /* (0,_,1) point of order 2 on Curve448 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, { /* (1,_,1) a point of order 4 on the twist of Curve448 */ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }, { /* (-1,_,1) point of order 4 on Curve448 */ 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }, }