mirror of
https://git.uploadfilter24.eu/lerentis/terraform-provider-gitea.git
synced 2024-11-05 10:28:12 +00:00
910ccdb092
Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.26.1 to 2.27.0. - [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases) - [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md) - [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.26.1...v2.27.0) --- updated-dependencies: - dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2 dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com>
590 lines
20 KiB
Go
590 lines
20 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package openpgp implements high level operations on OpenPGP messages.
|
|
package openpgp // import "github.com/ProtonMail/go-crypto/openpgp"
|
|
|
|
import (
|
|
"crypto"
|
|
_ "crypto/sha256"
|
|
_ "crypto/sha512"
|
|
"hash"
|
|
"io"
|
|
"strconv"
|
|
|
|
"github.com/ProtonMail/go-crypto/openpgp/armor"
|
|
"github.com/ProtonMail/go-crypto/openpgp/errors"
|
|
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
|
|
"github.com/ProtonMail/go-crypto/openpgp/packet"
|
|
_ "golang.org/x/crypto/sha3"
|
|
)
|
|
|
|
// SignatureType is the armor type for a PGP signature.
|
|
var SignatureType = "PGP SIGNATURE"
|
|
|
|
// readArmored reads an armored block with the given type.
|
|
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
|
|
block, err := armor.Decode(r)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if block.Type != expectedType {
|
|
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
|
|
}
|
|
|
|
return block.Body, nil
|
|
}
|
|
|
|
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
|
|
// signed message.
|
|
type MessageDetails struct {
|
|
IsEncrypted bool // true if the message was encrypted.
|
|
EncryptedToKeyIds []uint64 // the list of recipient key ids.
|
|
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
|
|
DecryptedWith Key // the private key used to decrypt the message, if any.
|
|
IsSigned bool // true if the message is signed.
|
|
SignedByKeyId uint64 // the key id of the signer, if any.
|
|
SignedBy *Key // the key of the signer, if available.
|
|
LiteralData *packet.LiteralData // the metadata of the contents
|
|
UnverifiedBody io.Reader // the contents of the message.
|
|
|
|
// If IsSigned is true and SignedBy is non-zero then the signature will
|
|
// be verified as UnverifiedBody is read. The signature cannot be
|
|
// checked until the whole of UnverifiedBody is read so UnverifiedBody
|
|
// must be consumed until EOF before the data can be trusted. Even if a
|
|
// message isn't signed (or the signer is unknown) the data may contain
|
|
// an authentication code that is only checked once UnverifiedBody has
|
|
// been consumed. Once EOF has been seen, the following fields are
|
|
// valid. (An authentication code failure is reported as a
|
|
// SignatureError error when reading from UnverifiedBody.)
|
|
Signature *packet.Signature // the signature packet itself.
|
|
SignatureError error // nil if the signature is good.
|
|
UnverifiedSignatures []*packet.Signature // all other unverified signature packets.
|
|
|
|
decrypted io.ReadCloser
|
|
}
|
|
|
|
// A PromptFunction is used as a callback by functions that may need to decrypt
|
|
// a private key, or prompt for a passphrase. It is called with a list of
|
|
// acceptable, encrypted private keys and a boolean that indicates whether a
|
|
// passphrase is usable. It should either decrypt a private key or return a
|
|
// passphrase to try. If the decrypted private key or given passphrase isn't
|
|
// correct, the function will be called again, forever. Any error returned will
|
|
// be passed up.
|
|
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
|
|
|
|
// A keyEnvelopePair is used to store a private key with the envelope that
|
|
// contains a symmetric key, encrypted with that key.
|
|
type keyEnvelopePair struct {
|
|
key Key
|
|
encryptedKey *packet.EncryptedKey
|
|
}
|
|
|
|
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
|
|
// The given KeyRing should contain both public keys (for signature
|
|
// verification) and, possibly encrypted, private keys for decrypting.
|
|
// If config is nil, sensible defaults will be used.
|
|
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
|
|
var p packet.Packet
|
|
|
|
var symKeys []*packet.SymmetricKeyEncrypted
|
|
var pubKeys []keyEnvelopePair
|
|
// Integrity protected encrypted packet: SymmetricallyEncrypted or AEADEncrypted
|
|
var edp packet.EncryptedDataPacket
|
|
|
|
packets := packet.NewReader(r)
|
|
md = new(MessageDetails)
|
|
md.IsEncrypted = true
|
|
|
|
// The message, if encrypted, starts with a number of packets
|
|
// containing an encrypted decryption key. The decryption key is either
|
|
// encrypted to a public key, or with a passphrase. This loop
|
|
// collects these packets.
|
|
ParsePackets:
|
|
for {
|
|
p, err = packets.Next()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
switch p := p.(type) {
|
|
case *packet.SymmetricKeyEncrypted:
|
|
// This packet contains the decryption key encrypted with a passphrase.
|
|
md.IsSymmetricallyEncrypted = true
|
|
symKeys = append(symKeys, p)
|
|
case *packet.EncryptedKey:
|
|
// This packet contains the decryption key encrypted to a public key.
|
|
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
|
|
switch p.Algo {
|
|
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH:
|
|
break
|
|
default:
|
|
continue
|
|
}
|
|
if keyring != nil {
|
|
var keys []Key
|
|
if p.KeyId == 0 {
|
|
keys = keyring.DecryptionKeys()
|
|
} else {
|
|
keys = keyring.KeysById(p.KeyId)
|
|
}
|
|
for _, k := range keys {
|
|
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
|
|
}
|
|
}
|
|
case *packet.SymmetricallyEncrypted:
|
|
if !p.IntegrityProtected && !config.AllowUnauthenticatedMessages() {
|
|
return nil, errors.UnsupportedError("message is not integrity protected")
|
|
}
|
|
edp = p
|
|
break ParsePackets
|
|
case *packet.AEADEncrypted:
|
|
edp = p
|
|
break ParsePackets
|
|
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
|
|
// This message isn't encrypted.
|
|
if len(symKeys) != 0 || len(pubKeys) != 0 {
|
|
return nil, errors.StructuralError("key material not followed by encrypted message")
|
|
}
|
|
packets.Unread(p)
|
|
return readSignedMessage(packets, nil, keyring, config)
|
|
}
|
|
}
|
|
|
|
var candidates []Key
|
|
var decrypted io.ReadCloser
|
|
|
|
// Now that we have the list of encrypted keys we need to decrypt at
|
|
// least one of them or, if we cannot, we need to call the prompt
|
|
// function so that it can decrypt a key or give us a passphrase.
|
|
FindKey:
|
|
for {
|
|
// See if any of the keys already have a private key available
|
|
candidates = candidates[:0]
|
|
candidateFingerprints := make(map[string]bool)
|
|
|
|
for _, pk := range pubKeys {
|
|
if pk.key.PrivateKey == nil {
|
|
continue
|
|
}
|
|
if !pk.key.PrivateKey.Encrypted {
|
|
if len(pk.encryptedKey.Key) == 0 {
|
|
errDec := pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
|
|
if errDec != nil {
|
|
continue
|
|
}
|
|
}
|
|
// Try to decrypt symmetrically encrypted
|
|
decrypted, err = edp.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
|
|
if err != nil && err != errors.ErrKeyIncorrect {
|
|
return nil, err
|
|
}
|
|
if decrypted != nil {
|
|
md.DecryptedWith = pk.key
|
|
break FindKey
|
|
}
|
|
} else {
|
|
fpr := string(pk.key.PublicKey.Fingerprint[:])
|
|
if v := candidateFingerprints[fpr]; v {
|
|
continue
|
|
}
|
|
candidates = append(candidates, pk.key)
|
|
candidateFingerprints[fpr] = true
|
|
}
|
|
}
|
|
|
|
if len(candidates) == 0 && len(symKeys) == 0 {
|
|
return nil, errors.ErrKeyIncorrect
|
|
}
|
|
|
|
if prompt == nil {
|
|
return nil, errors.ErrKeyIncorrect
|
|
}
|
|
|
|
passphrase, err := prompt(candidates, len(symKeys) != 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Try the symmetric passphrase first
|
|
if len(symKeys) != 0 && passphrase != nil {
|
|
for _, s := range symKeys {
|
|
key, cipherFunc, err := s.Decrypt(passphrase)
|
|
// In v4, on wrong passphrase, session key decryption is very likely to result in an invalid cipherFunc:
|
|
// only for < 5% of cases we will proceed to decrypt the data
|
|
if err == nil {
|
|
decrypted, err = edp.Decrypt(cipherFunc, key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if decrypted != nil {
|
|
break FindKey
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
md.decrypted = decrypted
|
|
if err := packets.Push(decrypted); err != nil {
|
|
return nil, err
|
|
}
|
|
mdFinal, sensitiveParsingErr := readSignedMessage(packets, md, keyring, config)
|
|
if sensitiveParsingErr != nil {
|
|
return nil, errors.StructuralError("parsing error")
|
|
}
|
|
return mdFinal, nil
|
|
}
|
|
|
|
// readSignedMessage reads a possibly signed message if mdin is non-zero then
|
|
// that structure is updated and returned. Otherwise a fresh MessageDetails is
|
|
// used.
|
|
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing, config *packet.Config) (md *MessageDetails, err error) {
|
|
if mdin == nil {
|
|
mdin = new(MessageDetails)
|
|
}
|
|
md = mdin
|
|
|
|
var p packet.Packet
|
|
var h hash.Hash
|
|
var wrappedHash hash.Hash
|
|
var prevLast bool
|
|
FindLiteralData:
|
|
for {
|
|
p, err = packets.Next()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
switch p := p.(type) {
|
|
case *packet.Compressed:
|
|
if err := packets.Push(p.Body); err != nil {
|
|
return nil, err
|
|
}
|
|
case *packet.OnePassSignature:
|
|
if prevLast {
|
|
return nil, errors.UnsupportedError("nested signature packets")
|
|
}
|
|
|
|
if p.IsLast {
|
|
prevLast = true
|
|
}
|
|
|
|
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType)
|
|
if err != nil {
|
|
md.SignatureError = err
|
|
}
|
|
|
|
md.IsSigned = true
|
|
md.SignedByKeyId = p.KeyId
|
|
if keyring != nil {
|
|
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
|
|
if len(keys) > 0 {
|
|
md.SignedBy = &keys[0]
|
|
}
|
|
}
|
|
case *packet.LiteralData:
|
|
md.LiteralData = p
|
|
break FindLiteralData
|
|
}
|
|
}
|
|
|
|
if md.IsSigned && md.SignatureError == nil {
|
|
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md, config}
|
|
} else if md.decrypted != nil {
|
|
md.UnverifiedBody = checkReader{md}
|
|
} else {
|
|
md.UnverifiedBody = md.LiteralData.Body
|
|
}
|
|
|
|
return md, nil
|
|
}
|
|
|
|
// hashForSignature returns a pair of hashes that can be used to verify a
|
|
// signature. The signature may specify that the contents of the signed message
|
|
// should be preprocessed (i.e. to normalize line endings). Thus this function
|
|
// returns two hashes. The second should be used to hash the message itself and
|
|
// performs any needed preprocessing.
|
|
func hashForSignature(hashFunc crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) {
|
|
if _, ok := algorithm.HashToHashIdWithSha1(hashFunc); !ok {
|
|
return nil, nil, errors.UnsupportedError("unsupported hash function")
|
|
}
|
|
if !hashFunc.Available() {
|
|
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashFunc)))
|
|
}
|
|
h := hashFunc.New()
|
|
|
|
switch sigType {
|
|
case packet.SigTypeBinary:
|
|
return h, h, nil
|
|
case packet.SigTypeText:
|
|
return h, NewCanonicalTextHash(h), nil
|
|
}
|
|
|
|
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
|
|
}
|
|
|
|
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
|
|
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
|
|
// MDC checks.
|
|
type checkReader struct {
|
|
md *MessageDetails
|
|
}
|
|
|
|
func (cr checkReader) Read(buf []byte) (int, error) {
|
|
n, sensitiveParsingError := cr.md.LiteralData.Body.Read(buf)
|
|
if sensitiveParsingError == io.EOF {
|
|
mdcErr := cr.md.decrypted.Close()
|
|
if mdcErr != nil {
|
|
return n, mdcErr
|
|
}
|
|
return n, io.EOF
|
|
}
|
|
|
|
if sensitiveParsingError != nil {
|
|
return n, errors.StructuralError("parsing error")
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
|
|
// the data as it is read. When it sees an EOF from the underlying io.Reader
|
|
// it parses and checks a trailing Signature packet and triggers any MDC checks.
|
|
type signatureCheckReader struct {
|
|
packets *packet.Reader
|
|
h, wrappedHash hash.Hash
|
|
md *MessageDetails
|
|
config *packet.Config
|
|
}
|
|
|
|
func (scr *signatureCheckReader) Read(buf []byte) (int, error) {
|
|
n, sensitiveParsingError := scr.md.LiteralData.Body.Read(buf)
|
|
|
|
// Hash only if required
|
|
if scr.md.SignedBy != nil {
|
|
scr.wrappedHash.Write(buf[:n])
|
|
}
|
|
|
|
if sensitiveParsingError == io.EOF {
|
|
var p packet.Packet
|
|
var readError error
|
|
var sig *packet.Signature
|
|
|
|
p, readError = scr.packets.Next()
|
|
for readError == nil {
|
|
var ok bool
|
|
if sig, ok = p.(*packet.Signature); ok {
|
|
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
|
|
sig.Metadata = scr.md.LiteralData
|
|
}
|
|
|
|
// If signature KeyID matches
|
|
if scr.md.SignedBy != nil && *sig.IssuerKeyId == scr.md.SignedByKeyId {
|
|
key := scr.md.SignedBy
|
|
signatureError := key.PublicKey.VerifySignature(scr.h, sig)
|
|
if signatureError == nil {
|
|
signatureError = checkSignatureDetails(key, sig, scr.config)
|
|
}
|
|
scr.md.Signature = sig
|
|
scr.md.SignatureError = signatureError
|
|
} else {
|
|
scr.md.UnverifiedSignatures = append(scr.md.UnverifiedSignatures, sig)
|
|
}
|
|
}
|
|
|
|
p, readError = scr.packets.Next()
|
|
}
|
|
|
|
if scr.md.SignedBy != nil && scr.md.Signature == nil {
|
|
if scr.md.UnverifiedSignatures == nil {
|
|
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by signature")
|
|
} else {
|
|
scr.md.SignatureError = errors.StructuralError("No matching signature found")
|
|
}
|
|
}
|
|
|
|
// The SymmetricallyEncrypted packet, if any, might have an
|
|
// unsigned hash of its own. In order to check this we need to
|
|
// close that Reader.
|
|
if scr.md.decrypted != nil {
|
|
mdcErr := scr.md.decrypted.Close()
|
|
if mdcErr != nil {
|
|
return n, mdcErr
|
|
}
|
|
}
|
|
return n, io.EOF
|
|
}
|
|
|
|
if sensitiveParsingError != nil {
|
|
return n, errors.StructuralError("parsing error")
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
// VerifyDetachedSignature takes a signed file and a detached signature and
|
|
// returns the signature packet and the entity the signature was signed by,
|
|
// if any, and a possible signature verification error.
|
|
// If the signer isn't known, ErrUnknownIssuer is returned.
|
|
func VerifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
|
|
var expectedHashes []crypto.Hash
|
|
return verifyDetachedSignature(keyring, signed, signature, expectedHashes, config)
|
|
}
|
|
|
|
// VerifyDetachedSignatureAndHash performs the same actions as
|
|
// VerifyDetachedSignature and checks that the expected hash functions were used.
|
|
func VerifyDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
|
|
return verifyDetachedSignature(keyring, signed, signature, expectedHashes, config)
|
|
}
|
|
|
|
// CheckDetachedSignature takes a signed file and a detached signature and
|
|
// returns the entity the signature was signed by, if any, and a possible
|
|
// signature verification error. If the signer isn't known,
|
|
// ErrUnknownIssuer is returned.
|
|
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
|
|
var expectedHashes []crypto.Hash
|
|
return CheckDetachedSignatureAndHash(keyring, signed, signature, expectedHashes, config)
|
|
}
|
|
|
|
// CheckDetachedSignatureAndHash performs the same actions as
|
|
// CheckDetachedSignature and checks that the expected hash functions were used.
|
|
func CheckDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (signer *Entity, err error) {
|
|
_, signer, err = verifyDetachedSignature(keyring, signed, signature, expectedHashes, config)
|
|
return
|
|
}
|
|
|
|
func verifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
|
|
var issuerKeyId uint64
|
|
var hashFunc crypto.Hash
|
|
var sigType packet.SignatureType
|
|
var keys []Key
|
|
var p packet.Packet
|
|
|
|
expectedHashesLen := len(expectedHashes)
|
|
packets := packet.NewReader(signature)
|
|
for {
|
|
p, err = packets.Next()
|
|
if err == io.EOF {
|
|
return nil, nil, errors.ErrUnknownIssuer
|
|
}
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
var ok bool
|
|
sig, ok = p.(*packet.Signature)
|
|
if !ok {
|
|
return nil, nil, errors.StructuralError("non signature packet found")
|
|
}
|
|
if sig.IssuerKeyId == nil {
|
|
return nil, nil, errors.StructuralError("signature doesn't have an issuer")
|
|
}
|
|
issuerKeyId = *sig.IssuerKeyId
|
|
hashFunc = sig.Hash
|
|
sigType = sig.SigType
|
|
|
|
for i, expectedHash := range expectedHashes {
|
|
if hashFunc == expectedHash {
|
|
break
|
|
}
|
|
if i+1 == expectedHashesLen {
|
|
return nil, nil, errors.StructuralError("hash algorithm mismatch with cleartext message headers")
|
|
}
|
|
}
|
|
|
|
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
|
|
if len(keys) > 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
if len(keys) == 0 {
|
|
panic("unreachable")
|
|
}
|
|
|
|
h, wrappedHash, err := hashForSignature(hashFunc, sigType)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
|
|
return nil, nil, err
|
|
}
|
|
|
|
for _, key := range keys {
|
|
err = key.PublicKey.VerifySignature(h, sig)
|
|
if err == nil {
|
|
return sig, key.Entity, checkSignatureDetails(&key, sig, config)
|
|
}
|
|
}
|
|
|
|
return nil, nil, err
|
|
}
|
|
|
|
// CheckArmoredDetachedSignature performs the same actions as
|
|
// CheckDetachedSignature but expects the signature to be armored.
|
|
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
|
|
body, err := readArmored(signature, SignatureType)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
return CheckDetachedSignature(keyring, signed, body, config)
|
|
}
|
|
|
|
// checkSignatureDetails returns an error if:
|
|
// - The signature (or one of the binding signatures mentioned below)
|
|
// has a unknown critical notation data subpacket
|
|
// - The primary key of the signing entity is revoked
|
|
// The signature was signed by a subkey and:
|
|
// - The signing subkey is revoked
|
|
// - The primary identity is revoked
|
|
// - The signature is expired
|
|
// - The primary key of the signing entity is expired according to the
|
|
// primary identity binding signature
|
|
// The signature was signed by a subkey and:
|
|
// - The signing subkey is expired according to the subkey binding signature
|
|
// - The signing subkey binding signature is expired
|
|
// - The signing subkey cross-signature is expired
|
|
// NOTE: The order of these checks is important, as the caller may choose to
|
|
// ignore ErrSignatureExpired or ErrKeyExpired errors, but should never
|
|
// ignore any other errors.
|
|
// TODO: Also return an error if:
|
|
// - The primary key is expired according to a direct-key signature
|
|
// - (For V5 keys only:) The direct-key signature (exists and) is expired
|
|
func checkSignatureDetails(key *Key, signature *packet.Signature, config *packet.Config) error {
|
|
now := config.Now()
|
|
primaryIdentity := key.Entity.PrimaryIdentity()
|
|
signedBySubKey := key.PublicKey != key.Entity.PrimaryKey
|
|
sigsToCheck := []*packet.Signature{ signature, primaryIdentity.SelfSignature }
|
|
if signedBySubKey {
|
|
sigsToCheck = append(sigsToCheck, key.SelfSignature, key.SelfSignature.EmbeddedSignature)
|
|
}
|
|
for _, sig := range sigsToCheck {
|
|
for _, notation := range sig.Notations {
|
|
if notation.IsCritical && !config.KnownNotation(notation.Name) {
|
|
return errors.SignatureError("unknown critical notation: " + notation.Name)
|
|
}
|
|
}
|
|
}
|
|
if key.Entity.Revoked(now) || // primary key is revoked
|
|
(signedBySubKey && key.Revoked(now)) || // subkey is revoked
|
|
primaryIdentity.Revoked(now) { // primary identity is revoked
|
|
return errors.ErrKeyRevoked
|
|
}
|
|
if key.Entity.PrimaryKey.KeyExpired(primaryIdentity.SelfSignature, now) { // primary key is expired
|
|
return errors.ErrKeyExpired
|
|
}
|
|
if signedBySubKey {
|
|
if key.PublicKey.KeyExpired(key.SelfSignature, now) { // subkey is expired
|
|
return errors.ErrKeyExpired
|
|
}
|
|
}
|
|
for _, sig := range sigsToCheck {
|
|
if sig.SigExpired(now) { // any of the relevant signatures are expired
|
|
return errors.ErrSignatureExpired
|
|
}
|
|
}
|
|
return nil
|
|
}
|