terraformDummyRepo2/vendor/github.com/cloudflare/circl/math/wnaf.go
dependabot[bot] 910ccdb092
Bump github.com/hashicorp/terraform-plugin-sdk/v2 from 2.26.1 to 2.27.0
Bumps [github.com/hashicorp/terraform-plugin-sdk/v2](https://github.com/hashicorp/terraform-plugin-sdk) from 2.26.1 to 2.27.0.
- [Release notes](https://github.com/hashicorp/terraform-plugin-sdk/releases)
- [Changelog](https://github.com/hashicorp/terraform-plugin-sdk/blob/main/CHANGELOG.md)
- [Commits](https://github.com/hashicorp/terraform-plugin-sdk/compare/v2.26.1...v2.27.0)

---
updated-dependencies:
- dependency-name: github.com/hashicorp/terraform-plugin-sdk/v2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-07-03 20:21:30 +00:00

84 lines
2.2 KiB
Go

// Package math provides some utility functions for big integers.
package math
import "math/big"
// SignedDigit obtains the signed-digit recoding of n and returns a list L of
// digits such that n = sum( L[i]*2^(i*(w-1)) ), and each L[i] is an odd number
// in the set {±1, ±3, ..., ±2^(w-1)-1}. The third parameter ensures that the
// output has ceil(l/(w-1)) digits.
//
// Restrictions:
// - n is odd and n > 0.
// - 1 < w < 32.
// - l >= bit length of n.
//
// References:
// - Alg.6 in "Exponent Recoding and Regular Exponentiation Algorithms"
// by Joye-Tunstall. http://doi.org/10.1007/978-3-642-02384-2_21
// - Alg.6 in "Selecting Elliptic Curves for Cryptography: An Efficiency and
// Security Analysis" by Bos et al. http://doi.org/10.1007/s13389-015-0097-y
func SignedDigit(n *big.Int, w, l uint) []int32 {
if n.Sign() <= 0 || n.Bit(0) == 0 {
panic("n must be non-zero, odd, and positive")
}
if w <= 1 || w >= 32 {
panic("Verify that 1 < w < 32")
}
if uint(n.BitLen()) > l {
panic("n is too big to fit in l digits")
}
lenN := (l + (w - 1) - 1) / (w - 1) // ceil(l/(w-1))
L := make([]int32, lenN+1)
var k, v big.Int
k.Set(n)
var i uint
for i = 0; i < lenN; i++ {
words := k.Bits()
value := int32(words[0] & ((1 << w) - 1))
value -= int32(1) << (w - 1)
L[i] = value
v.SetInt64(int64(value))
k.Sub(&k, &v)
k.Rsh(&k, w-1)
}
L[i] = int32(k.Int64())
return L
}
// OmegaNAF obtains the window-w Non-Adjacent Form of a positive number n and
// 1 < w < 32. The returned slice L holds n = sum( L[i]*2^i ).
//
// Reference:
// - Alg.9 "Efficient arithmetic on Koblitz curves" by Solinas.
// http://doi.org/10.1023/A:1008306223194
func OmegaNAF(n *big.Int, w uint) (L []int32) {
if n.Sign() < 0 {
panic("n must be positive")
}
if w <= 1 || w >= 32 {
panic("Verify that 1 < w < 32")
}
L = make([]int32, n.BitLen()+1)
var k, v big.Int
k.Set(n)
i := 0
for ; k.Sign() > 0; i++ {
value := int32(0)
if k.Bit(0) == 1 {
words := k.Bits()
value = int32(words[0] & ((1 << w) - 1))
if value >= (int32(1) << (w - 1)) {
value -= int32(1) << w
}
v.SetInt64(int64(value))
k.Sub(&k, &v)
}
L[i] = value
k.Rsh(&k, 1)
}
return L[:i]
}